ON STABILITY OF MOTION RELATIVE TO A PART OF THE VARIABLES FOR LINEAR SYSTEMS WITH CONSTANT OR ALMOST-CONSTANT MATRICES*

Iu. A. KRIVOSHEEV and A. V. LUTSENKO

Conditions for stability and asymptotic stability relative to a part of the variables are examined for the motion of linear systems. Criteria for stability and asymptotic stability of motion relative to a part of the variables have been established for systems with constant coefficients. Sufficient conditions for stability and asymptotic stability of motion relative to a part of the variables are derived for systems with almost-constant coefficients. The paper succeeds /1-3/.

1. We consider a system of differential equations of perturbed motion

$$
\begin{equation*}
\mathbf{x}^{\cdot}=A \mathbf{x} \tag{1.1}
\end{equation*}
$$

in which A is an n th-order constant square matrix, $\mathbf{x} \in E_{n}$. We represent vector \mathbf{x} in the form /1,2/

$$
\begin{aligned}
& \mathbf{x}=\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{p}\right)=(\mathbf{y}, \mathbf{z}) \\
& m>0, \quad p \geqslant 0, \quad m+p=n
\end{aligned}
$$

The stability of the unperturbed motion $\mathbf{x}=0$ relative to variables y_{1}, \ldots, y_{m} will be called y-stability. If we introduce the $m \times n$-matrix
then vector \mathbf{y} can be presented as $\mathbf{y}=H \mathbf{x}$. Conditions for the asymptotic \mathbf{y}-stability of motion $x=0$ of system (1.1) are given in $/ 3 /$ wherein the asymptotic stability of motion $\mathbf{x}=0$ relative to a part of the variables was investigated for the system $\mathbf{x}=A \mathbf{x}+\varphi(t, \mathbf{x})$. This result is presented in Theorem 2. At first we prove an auxiliary assertion whose n-dimensional analog can be found in /4/.

Lemma. The motion $\mathbf{x}=0$ of system $\mathbf{x}^{*}=A(t) \mathbf{x}$ with a matrix $A(t)$ piecewise-continuous on $[0, \infty]$ is:

1) \mathbf{y}-stable if and only if the component $\mathrm{y}(t)$ of each solution $\mathbf{x}(t)$ is bounded on $[0$, $\infty)$;
2) asymptotically y-stable if and only if the component $y(t)$ of each solution $\mathbf{x}(t)$ tends to zero as $t \rightarrow \infty$.

Proof. 1) Let the motion $x=0$ be y-stable. Fox arbitrary $\varepsilon>0, t_{0} \geqslant 0$ we can find $\delta\left(\varepsilon, t_{0}\right)>0$ such that for any solutions $\mathbf{x}(t)$, from $\left\|\mathbf{x}\left(t_{0}\right)\right\|<\delta$ follows $\|y(t)\|<\varepsilon$ when $t \geqslant t_{0}$. Let us consider the fundamental system of solutions $x_{1}(t), \ldots, x_{n}(t)$ satisfying the conditions
$\left\|\mathrm{x}_{i}\left(t_{0}\right)\right\|<\delta, i=1, \ldots, n$. The fundamental matrix $\Phi(t)=\left[\mathrm{x}_{1}(t), \ldots, \mathrm{x}_{\mathrm{n}}(t)\right]$ set up from these solutions admits of the bound $\|H \Phi(t)\| \leqslant L$ for $t \geqslant 0$, where $L>0$. Consequently, for each solution $\mathrm{x}(t)$ we have

$$
\|\mathrm{y}(t)\|=\|H \mathrm{x}(t)\|=\|H \Phi(t) \mathbf{c}\| \leqslant L\|\mathbf{c}\|
$$

when $t \geqslant 0$. Conversely, let the component $y(t)$ of each solution $x(t)$ be bounded. Let us consider the fundamental matrix $\Phi(t)$ satisfying the condition $\Phi\left(t_{0}\right)=I$, where I is the unit matrix. There exists $L>0$ such that $\|H \Phi(t)\| \leqslant L$ when $t \geqslant 0$; therefore, from $\mathbf{x}(t)=\Phi(t) \times\left(t_{n}\right)$ follows $\|\mathbf{y}(t)\|=\left\|H \Phi(t) \times\left(t_{0}\right)\right\| \leqslant L\left\|\times\left(t_{0}\right)\right\|$. If now we choose $\delta=\varepsilon L^{-1}$, then from $\left\|\times\left(t_{0}\right)\right\|<\delta$ follows $\|y(t)\|<\varepsilon$ for $t \geqslant t_{0}$.
2) Let the motion $x=0$ be asymptotically y-stable. There exists $\Delta\left(t_{0}\right)>0$ such that each solution $\mathrm{x}(t)$ for which $\left\|\mathrm{x}\left(t_{0}\right)\right\|<\Delta$ satisfies the condition

$$
\begin{equation*}
\lim \|y(t)\|=0, \quad t \rightarrow \infty \tag{1.2}
\end{equation*}
$$

The fundamental matrix $\Phi(t)$ set up from the solutions $\mathbf{x}_{1}(t), \ldots, x_{n}(t)$ satisfying the conditions $\left\|\mathrm{x}_{i}\left(t_{0}\right)\right\|<\Delta(i=1, \ldots, n)$ possesses the property $\|H \Phi(t)\| \rightarrow 0$ as $t \rightarrow \infty$. Therefore, for each solution x (t) we have

$$
\lim \|y(t)\|=\lim \|H \Phi(t) c\|=0, \quad t \rightarrow \infty
$$

Conversely, let the component. y (t) of each solution $\mathbf{x}(t)$ satisfy condition (1.2). Then
$\|H \Phi(t)\| \rightarrow 0$ as $t \rightarrow \infty$, where $\Phi(t)$ is the fundamental matrix satisfying the condition $\Phi\left(t_{0}\right)=1$. Consequently, $\|H \Phi(t)\| \leqslant L, t \geqslant 0$, for some $i>0$. From $\|y(t)\| \leqslant L \| x\left(t_{B} \|\right.$ if follows that if we choose $\delta=\varepsilon L^{-1}$, then $\|y(t)\|<e$ for $t \geqslant t_{0}$, which together with (1.2) signifies the asymptotic
$y-s t a b i l i t y$ of motion $x=0$.
Root vectors /5/ play an essential role in what follows. Let λ_{1}, ... λ_{k} be pairwise-distinct eigenvalues of matrix A and let s_{α} linearly-independent eigenvectors in space E_{n} correspond to the eigenvalue λ_{α}. We denote these vectors $v_{11}{ }^{\alpha}, \ldots, v_{s_{\alpha}}^{\alpha}$; $\mathbf{v}_{\beta v}^{\alpha}$ is a root vector of height γ, generated by the eigenvector $v_{\beta_{1}}{ }^{\alpha}$. Having multiplied the matrix exp $\left[\left(A-\lambda_{\alpha} I\right) t\right]$ by the root vector $y_{\beta} \gamma^{\alpha}$, we obtain the relation

$$
\exp \left[\left(A-\lambda_{\alpha} I\right) t\right] \mathbf{v}_{\beta \gamma}^{\alpha}=\mathbf{v}_{\beta \gamma}^{\alpha}+t\left(A-\lambda_{\alpha} I\right) \mathbf{v}_{\beta \gamma}^{\alpha}+\ldots+\frac{t^{\nu-1}}{(\gamma-1)!}\left(A-\lambda_{\alpha} I\right)^{\gamma-1} v_{\beta \gamma}^{\alpha}
$$

whence follows the equality

$$
\begin{equation*}
\exp (A t))_{\beta \gamma}^{\alpha}=\exp \left(\lambda_{\alpha} t\right)\left(v_{\beta \gamma}^{\alpha}-t v_{\beta \gamma-1}^{\alpha}+\ldots+\frac{t \gamma-1}{(\gamma-1)!} v_{\beta 1}^{\alpha}\right) \tag{1.3}
\end{equation*}
$$

In the proper subspace corresponding to eigenvalue λ_{i} we can choose the basis $v_{11}^{i}, \ldots, v_{s_{i}}^{i}$ such that to each eigenvector $v_{r 1}^{i}\left(r=1, \ldots, s_{i}\right)$ there corresponds $/ 5 /$ the root vectors $v_{r 1}^{i}, \ldots$., $\mathbf{v}_{r p_{r}}^{i}$ defined by the relations

$$
\begin{aligned}
& A \mathbf{v}_{r 1}^{i}=\lambda_{i} \mathbf{v}_{r 1}^{i} \\
& A v_{r 2}^{i}=\lambda_{1} \mathbf{v}_{r 2}^{i}+v_{r 1}^{i} \\
& \cdots \cdots \cdots \\
& A v_{r p_{r}}^{i}=\lambda_{i} v_{r p_{r}}^{i}+v_{r p_{r}-i}^{i}
\end{aligned}
$$

where these root vectors $\left(r=1, \ldots, s_{i} ; i=1, \ldots, k\right)$ form a basis in space E_{n}. Let us consider an arbitrary solution $x(t)=\exp (A t) x_{0}$ of system (1.1). We expand vector
\mathbf{x}_{0} with respect to the base root vectors of matrix A

$$
\mathbf{x}_{0}=\sum_{i=1}^{k} \sum_{r=1}^{s_{j}}\left(b_{r 1}^{i} \mathbf{v}_{r 1}^{i}+\frac{1}{i}+b_{r p_{r}}^{i} \mathbf{v}_{r_{r}}^{i}\right)
$$

By (1.3) we obtain

$$
\exp (A t) x_{0}=\sum_{i=1}^{k} \sum_{r=1}^{\theta_{i}} \exp \left(\lambda_{i} i\right)\left(b_{r 1}{ }^{i} \mathbf{v}_{r 1}{ }^{i}+b_{r 2}^{i}\left(\mathbf{v}_{r 2}{ }^{i}+t \mathbf{v}_{r 1}{ }^{i}\right)+\ldots+b_{r p_{r}}^{i}\left(\mathbf{v}_{r p_{r}}^{i}+t \mathbf{v}_{r p_{r}-1}^{i}+\ldots+\frac{t_{r} p^{-1}}{\left(p_{r}-1\right)!} \mathbf{v}_{r 1_{1}}^{i}\right)\right)
$$

We pick out the component $y(t)$ of this solution

$$
\begin{aligned}
& \mathrm{y}(t)=H \mathrm{x}(t)=\sum_{i=1}^{k} \mathrm{~S}_{i}(t) \\
& \mathrm{S}_{\mathrm{i}}(t)=\sum_{r=1}^{s_{i}} \exp \left(\lambda_{i} t\right)\left(b_{r 1}^{i} H \mathbf{v}_{r 1}^{i}+b_{r 2}^{i}\left(H \mathbf{v}_{r 2}^{i}+t H \mathbf{v}_{r 1}^{i}\right)+\ldots+b_{r p_{r}}^{i}\left(H \mathbf{v}_{r p_{r}}^{i}+t H \mathbf{v}_{r p_{r}-1}^{i}+\ldots+\frac{t^{p_{r}-1}}{\left(p_{r}-1\right)!} H \mathbf{v}_{r 1}^{i}\right)\right)
\end{aligned}
$$

We separate the index set $\Omega=\{1, \ldots, k\}$ into three subsets $\Omega_{1}, \Omega_{2}, \Omega_{3}$. In them we include indices $i \in \Omega$ for which $\operatorname{Re} \lambda_{i}=0$, $\operatorname{Re} \lambda_{i}<0$, Re $\lambda_{i}>0$, respectively, Then vector $y(t)$ can be presented as

$$
\begin{equation*}
y(t)=\sum_{i \in \Omega_{1}} S_{i}(t)+\sum_{i \in \Omega_{2}} S_{i}(t)+\sum_{i \in \Omega_{3}}^{S_{i}} S_{i}(t) \tag{1.4}
\end{equation*}
$$

Theorem 1. Let $\operatorname{Re} \lambda_{i}=0$ for $i=1, \ldots, l$ and Re $\lambda_{i} \neq 0$ for $l=l+1, \ldots, k$. Motion $x=0$ of system (1.1) is y-stable if and only if subspace $G=\{x: H x=0\}$ contains:
a) the root vectors corresponding to eigenvalues λ with $R e \lambda=0$, except, perhaps, the vectors of maximum height, i.e., the vectors $\mathbf{v}_{r 1}^{i}, \ldots, \mathbf{v}_{r p_{r}-1}^{i}\left(r=1, \ldots, s_{i} ; i=1, \ldots, l\right)$;
b) the root vectors corresponding to eigenvalues λ with $\operatorname{Re} \lambda>0$.

Proof. We first prove the sufficiency of the theorem's conditions. If both conditions are fulfilled, then (1.4) takes the form

$$
\mathbf{y}(t)=\sum_{i \in \Omega_{1}} \sum_{r=1}^{s_{i}} \exp \left(\lambda_{i} t\right) b_{r p_{r}}^{i} I \mathbf{v}_{r p_{r}}^{i}+\sum_{i \in \Omega_{2}} S_{i}(t)
$$

Since Re $\lambda_{i}=0$ are bounded on
when $i \in \Omega_{1}$ and $\operatorname{Re} \lambda_{i}<0$ when $i \in \Omega_{2}$, all summands of the expression obtained $[0, \infty)$. Consequently, there exists $L>0$ such that $\|y(t)\| \leqslant L$ for $0 \leqslant t<\infty$.

Applying the lemma, we obtain the y-stability of motion $x=0$.
Let us prove the necessity of the theorem's conditions. Assume that the first condition is violated. Suppose that for some $i \in \Omega_{1}$ and for some $r(1 \leqslant r \leqslant s i)$ we find a number $q \geqslant 1$ such that
In such case we take vector $\quad \mathbf{v}_{r_{p_{r}}}^{i}$ as $\quad \begin{gathered}H \mathbf{v}_{r p_{r}-q}\end{gathered}$

$$
\begin{equation*}
\mathrm{y}(t)=H \exp (A t) \mathbf{v}_{r p_{r}}^{i}=\exp \left(\lambda_{i} t\right)\left(H \mathbf{v}_{r p_{r}}^{i}+\ldots+\frac{t^{q}}{q!} H \mathbf{v}_{r p_{r}-q}^{i}+\ldots+\frac{t^{p_{r}-1}}{\left(p_{r}-1\right)!} H \mathbf{v}_{r \mathbf{1}}{ }^{i}\right) \tag{1.6}
\end{equation*}
$$

Hence by virtue of (1.5) it follows that $\|y(t)\|$ is not bounded as $t \rightarrow \infty$. Now assume that the theorem's second condition is violated. Suppose that for some $i \in \Omega_{3}$ and for some r we find a number $q \geqslant 0$ such that

$$
\begin{equation*}
H \mathbf{v}_{r r_{r^{-q}}}^{i} \neq 0 \tag{1,7}
\end{equation*}
$$

As in the preceding case we take vector $v_{r p_{r}}^{i}$ as x_{0}. Then on the basis of equality (1.6) and condition (1.7) we obtain the unboundedness of $\|y(t)\|$ as $t \rightarrow \infty$.

Theorem 2. Motion $x=0$ of system (1.1) is asymptotically $y-s t a b l e$ if and only if all root vectors of matrix A corresponding to eigenvalues λ with $R e \lambda \geqslant 0$ belong to subspace $G=\{\mathbf{x}: H \mathrm{x}=0\}$.

We can convince ourselves of the validity of this statement by using relations (1.4) and (1.6). An algebraic variant of the theorem has been presented in $/ 3 /$.
2. The next two theorems are an extension of Bellman's results to the case of stability relative to a part of the variables. We consider the system of differential equations of perturbed motion

$$
\begin{equation*}
\mathbf{x}^{*}=(A+B(t)) \mathbf{x} \tag{2.1}
\end{equation*}
$$

where matrix $B(t)$ is piecewise-continuous on $[0, \infty)$.
Theorem 3. If motion $x=0$ of system (1.1) is $y-s t a b l e$, then so is the motion $x=0$ of system (2.1) under the condition that the last $n-m$ columns of matrix $B(t)$ consist of zeros and

$$
\int_{0}^{\infty}\|B(t)\| d t<\infty
$$

Proof. By the Cauchy formula we have

$$
\mathbf{x}(t)=\exp (A t) \mathbf{x}_{0}+\int_{0}^{t} \exp [A(t-\tau)] B(\tau) \mathbf{x}(\tau) d \tau
$$

Having multiplied this equality by H, we obtain

$$
\begin{equation*}
H \times(t)=H \exp (A t) \mathrm{x}_{0}+\int_{0}^{t} H \exp [A(t-\tau)] B(\tau) \times(\tau) d \tau \tag{2.2}
\end{equation*}
$$

Since motion $x=0$ of system (1.1) is y-stable, the function $H \exp (A t)$ is bounded, i.e. $\|H \exp (A t)\| \leqslant M \quad$ for $\quad 0 \leqslant t<\infty$. Therefore, the inequality

$$
\|H \times(t)\| \leqslant M\left\|\mathbf{x}_{0}\right\|+\int_{0}^{t} M\|B(\tau)\|\|H \mathbf{x}(\tau)\| d \tau
$$

is valid, whence

$$
\|H \times(t)\| \leqslant M\left\|\mathbf{x}_{0}\right\| \exp \left[M \int_{0}^{t}\|B(\tau)\| d \tau\right] \leqslant M\left\|\mathrm{x}_{0}\right\| \exp \left[M \int_{0}^{\infty}\|B(\tau)\| d \tau\right]
$$

This estimation signifies that the component $y(t)$ of each solution $x(t)$ of system (2.1) is bounded. Consequently, by the lemma the motion $x=0$ is y-stable.

If we consider the system

$$
y^{\cdot}=\left(1+t^{2}\right)^{-1} z, \quad z^{\cdot}=z
$$

we can discover that, in general, we cannot waive the requirement that the last $n-m$ columns of matrix $B(t)$ be zero. Indeed, if we set

$$
A=\left\|\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right\|, \quad B=\left\|\begin{array}{cc}
0 & \left(1+t^{2}\right)^{-1} \\
0 & 0
\end{array}\right\|
$$

the hypotheses of Theorem 3 are fulfilled except for the requirement that the last $n-m=1$ column of matrix B be zero. Each solution of the system has the form

$$
y(t)=y_{0}+z_{0} \int_{0}^{t}\left(1+\tau^{2}\right)^{-1} \exp (\tau) d \tau, \quad z(t)=z_{0} \exp (t)
$$

Whence if follows that if $z_{0} \neq 0$ the quantity $\|y(t)\|$ is not bounded as $t \rightarrow \infty$.
Theorem 4. If motion $\mathbf{x}=0$. of system (1.1) is asymptotically \mathbf{y}-stable, then so is the motion $\mathbf{x}=0$ of system (2.1) under the condition that the last $n-m$ columns of matrix $B(t)$ consist of zeros and $\|B(t)\| \leqslant \varepsilon$, where ε is sufficiently small.

Proof. We set $2 a=\max _{i \in \Omega_{2}} \operatorname{Re} \lambda_{i}$. Then

$$
\begin{equation*}
\|H \exp (A t)\|=\left\|\sum_{i \in \Omega_{2}} \exp \left(\lambda_{i} t\right) Q_{i}(t)\right\| \leqslant \sum_{i \in \Omega_{2}}\left\|Q_{i}(t)\right\| \exp (2 a t) \tag{2.3}
\end{equation*}
$$

Here $Q_{i}(t)$ are polynomials of degree no higher than n; therefore, the estimation of (2.3) can be replaced by

$$
\|H \exp (A t)\| \leqslant c \exp (a t)
$$

In such case, from (2.2) we obtain

$$
\|H \mathbf{x}(t)\| \leqslant c\left\|\mathbf{x}_{0}\right\| \exp (a t)+c \varepsilon \int_{0}^{t} \exp [a(t-\tau)]\|H \times(\tau)\| d \tau
$$

After multiplying both sides of this inequality by $\exp (-a t)$ and applying the Gronwall-Bellman inequality, we obtain the estimation

$$
\|H \mathbf{x}(t)\| \exp (-a t) \leqslant c\left\|\mathbf{x}_{0}\right\| \exp (c \varepsilon t)
$$

If $c \varepsilon+a<0$, the relation

$$
\lim \|H \mathbf{x}(t)\|=0 \quad \text { as } \quad t \rightarrow \infty
$$

is fulfilled, which, by the lemma, is equivalent to the asymptotic y-stability of motion $\mathrm{x}=0$ of system (2.1).

The example

$$
y^{\cdot}=-y+e\left(1+|t|^{-1}\right)_{z}, \quad z^{\cdot}=z
$$

shows that here too we cannot waive the requirement that the last $n-m$ columns of matrix $B(t)$ be zero. Indeed, if we set

$$
A=\|-1 \quad 0 \quad\|, \quad B=\left\|\begin{array}{cc}
0 & \mathrm{e}(1+|t|)^{-1} \\
0 & 1
\end{array}\right\|
$$

then the conditions of Theorem 4 are fulfilled except for that requirement. For any $\varepsilon \neq 0$ the component

$$
y(t)=\exp (-t)\left(y_{0}+\varepsilon \int_{0}^{t}(1+|\tau|)^{-1} \exp (2 \tau) d \tau\right)
$$

is not bounded as $t \rightarrow \infty$.

REFERENCES

1. RUMIANTSEV, V. V., On stability of motion relative to a part of the variables. Vestn. Mosk. Gos. Univ. Ser. Mat., Mekh., Astron., Fiz., Khim., No.4, 1957. (see also London-New York. Academic Press, 1971).
2. OZIRANER, A. S. and RUMIANTSEV, V. V., The method of Liapunov functions in the stability problem for a motion with respect to a part of the variables. PMM Vol. 36 , No. $2,1972$.
3. LUTSENKO, A. V. and STADNIKOVA, L. B., On partial stability in the first approximation. Differents. Uravn., Vol.9, No.8, 1973.
4. DEMIDOVICH, B. P., Lectures on the Mathematical Theory of Stability. Moscow, "Nauka", 1967.
5. FADDEEV, D. K. and FADDEEVA, V. N., Computational Methods of Linear Algebra. Leningrad, Fixmatgiz, 1963.
6. BELLMAN, R., Stability Theory of Differential Fquations. New York, McGraw-Hill Book Co., Inc., 1953.
