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ON STABILITY OF MOTION RELATIVE TO A PART OF THE VARIABLES 
FOR LINEAR SYSTEMS WITH CONSTANT OR ALMOST-CONSTANT MATRICES* 

Iu. A. KRIVOSRSEV and A. V. LUTSENKO 

Conditions for stability and asymptotic stability relative to a part of the varia- 
bles are examined for the motion of linear systems. Criteria for stability and 
asymptotic stability of motion relative to a part of the variables have been estab- 
lished for systems with constant coefficients. Sufficient conditions for stability 
and asymptotic stability of motion relative to a part of the variables are derived 
for systems with almost-constant coefficients. The paper succeeds /l-33/. 

1. We consider a system of differential equations of perturbed motion 

x'= Ax (1.1) 

in which A is an nth-order constant square matrix, XGE,. We represent vector X in the form 
/1,2/ 

x = (Yl, . . ., Ym, 21, . . ., $1 = (Y, 2) 
m>O, p>O, m+p=n 

The stability of the unperturbed motion x = 0 relative 
ed y-stability. If we introduce the m 2; n-matrix 

1 o...o o...U 

*= 0 1...0 o...o 
. . 

0 O...l o...o 

to variables Y,, . . *7 Ym will be call- 

then vector y can be presented as y = Hx. Conditions for the asymptotic y-stability of mot- 
ion x=0 of system (1.1) are given in /3/ wherein the asymptotic stability of motion x = 0 
relative to a part of the variables was investigated for the system x' = Ax f cp (t, x). This 
result is presented in Theorem 2. At first we prove an auxiliary assertion whose n-dimension- 
al analog can be found in /4/. 

Lemma. The motion x = 0 of system x' = A (t)x with a matrix A(t) piecewise-continuous 
on IO, 001 is: 

1) y-stable if and only if the component y(t) of each solution x(t) is bounded on IO,. 
m); 

2) asymptotically y-stable if and only if the component y(t) of each solution x(t) tends 
to zero as t+oo. 

Proof. 1) Let the motion x=0 be Y-stable. For arbitrary e>O, to>,0 we can find 

6 (E, 10) > 0 such that for any solutions x (t) , from I\ x (to) /I < 6 follows II Y (t) II < 8 when t > to. 
Let us consider the fundamental system of solutions x1(t),..., h(t) satisfying the conditions 

11 xi (to) 11 < 6, i = i,. ., R. The fundamental matrix a(f) = Ix1 (I),..., xn(t)] set up from these solm- 
tions admits of the bound IIH@(t)jlfL for t>O , where L > 0. Consequently, for each 
solution x(1) we have 

11 y (t) II = II ffx (4 I = II H@ (Q c II -s L II c I 

when t>o. Conversely, let the component y(t) of each solution x(t) be bounded. Let us con- 
sider the fundamental matrix Q,(t) satisfying the condition Q, (10) = 1, where I is the unit 
matrix. There exists L>O such that IIH@((t)II<L when t>o; therefore, from x (t) = (r, (t) x (t.) 
follows II y Cl) Il = II Ho (t) x (to) 11 < L II x (&J II. If now we choose d = EL-’ , then from (lx (to) II < 6 fol- 
lows IIY (t) il<~ for 2 > lo. 

2) Let the motion x= 0 be asymptotically y-stable. There exists A(t,,)>O such that 
each solution x(t) for which llx(lO)ll< A satisfies the condition 

lim 11 y (t) II = 0, t - m (1.2) 
The fundamental matrix Q(L) set up from the solutions ~x,(~),...,x,,(I) satisfying the conditions 
[lxi(to) li<A(i=i,...,n) possesses the property ((H@(t)\/ -0 as t-c-. Therefore, for each solution 
x(t) we have 

lim 11 7 (t) II = lim I/ H@ (t) C /I = 0, t - m 

Conversely, let the comp0nent.y (1) of each solution x(t) satisfy condition (1.2). Then 
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11 H@ (I) 11 -- 0 as I-"c, where a((11 is the fundamental matrix satisfying the condition (I= I. 
Consequently, llflQ((r)I< jZ, t>o, for some i.>o. From /I y (0 jj 6: L I/ x i&J /i if follows that if we 
choose 6 = EL-', then i/y (2) j/ <’ B for t>iot which together with (1.2) signifies the asymptotic 

?'-stability of motion x= 0. 
Root vectors /5/ play an essential role in what follows. Let hl, . . ., hh be pairwise-dis- 

tinct eigenvalues of matrix A and let sor linearly-independent eigenvectors in space E, cor- 
respond to the eigenvalue ha . We denote these vectors vlla, . . . . v&,; vr,, is a root vector 
of height y, generated by the eigenvector vma * Having multiplied the matrix cxp I(>! ---1,1)1] 
by the root vector vpya, we obtain the relation 

esp [(A - h,Z) tf V& = vrv i- t (A - 3.J) vFv +- . . -I- & (A - h,Z)“” v& 

whence follows the equality 
tV-1 

exp(Al)r~~=exp(h,t)(v~~-l-tvpaycl+...Jr- (? - ,)! %Q (1.3) 

In the proper subspace corresponding to eigenvalue hi we can choose the basis * 1 

sucp that to each eigenvector vFli(r = I,..., 
v11 I ‘ . f, YSil 

si) there corresponds /5/ the root vectors v,,~, . . 
.1 vrpr defined by the relations 

AvpIi = hivrl* 

AvFli = &v,z” i v,li 
. . . . ..I...... 

AY:,, = hivtPr i- v&,-i 

where these root vectors (r = f, . . ., si; i = 1, . . ., k) form a basis in space E,. 
Let us consider an arbitrary solution x(t)= exp(&)x" of system (1.1). We expand vector 

x0 with respect to the base root vectors of matrix .A 

Sj 

xg= i: x (b,*'v,,i + I . 
i-1 r=1 

. i btq.)‘irp*) 

By (1.3) we obtain 

exp (At) xo = 5 ,$ exp (h,t) (byIivlIi + bps” (v,.%~ + t~,~“) + . . . 
i=* I==1 

+ b:, cvfpr + tvfpl_, -t- . . . + cPfpr-f - V,l% r - i)! 

We pick out the component y(t) of this solution 

y(f)= HX(f)= 5 St (t) 
i=l 

We separate the index set S2 = ft...., k) into three subsets Q,,Q,, 0,. In them we include in- 
dices i Ea for which Rehi = 0, Re& (0, Reh, >0, respectively. Then vector y(t) can be 
presented as 

(1.4) 

Theorem 1. Let Rehi= 0 for i = 1,..., I and R6hi 10 for I = L+ I,..., k. Motion x = 0 
of system (1.1) is y-stable if and only if subspace G = {x:Hx = 0) contains: 

a) the root vectors corresponding to eigenvalues h with 
i 

Reh = 0, except, perhaps, the 
vectors of maximum height, i.e., the vectors vrli ,..,,v,.~~_~ (r = 1.. . ., sj; i = 1, . .( 2); 

b) the root vectors corresponding to eigenvalues h with Reh>O. 

Proof. We first prove the sufficiency of the theorem's conditions. If both conditions 
are fulfilled, then (1.4) takes the form 

Since Re&==O when iEC& and Rehi<O when i=Q,, all summands of the expression obtained 
are bounded on IO, 00). Consequently, there exists L> 0 such that )I y(t)11 <L for 0 <t-C 00. 
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Applying the lemma, we obtain the y -stability of motion x= 0. 
Let us prove the necessity of the theorem's conditions. Assume that the first condition 

is violated. Suppose that for some iE 51, and for some r (1 <r<si) we find a number P>l 
such that 

&t-9 #O (1.5) 
In such case we take vector vi,, as x0. Then I 

y(t) = H esp (At) v&,, = 0xp(h,t)(H&~ 3_ . . . + +v:,+ + . . . + ($$pV,: (1.6) 

Hence by virtue of (1.5) it follows that IIy(t)ll is not bounded as t+oo. Now assume that the 
theorem's second condition is violated. SupIjose that for some iEEQX and for some r we find 
anumber q>O such that 

Hv:Pl-,#O (1.7) 

As in the preceding case we take vector vi, as 
condition (1.7) we obtain the unboundednessrof jIy;"t;ll 

Then on the basis of equality (1.6) and 
as t-too. 

Theorem 2. Motion X= 0 of system (1.1) is asymptotically y-stable if and only if 
all root vectors of matrix A corresponding to eigenvalues h with Reb> 0 belong to subspace 
G = {x: Hx = 0). 

We can convince ourselves of the validity of this statement by using relations (1.4) and 
(1.6). An algebraic variant of the theorem has been presented in /3/. 

2. The next two theorems are an extension of Bellman's results to the case of stability 
relative to a part of the variables. We consider the system of differential equations of per- 
turbed motion 

x' = (A + B (t)) x 
(2.1) 

where matrix B(t) is piecewise-continuous on IO, w). 

Theorem 3. If motion x= 0 of system (1.1) is y-stable, then so is the motions = 0 
of system (2.1) under the condition that the last n-m columns of matrix B(t) consist of zeros 
and 

5 II B(t) II dt < 00 
II 

Proof. By the Cauchy formula we have 

x(t) = exp (At) x0 + [ exp [A (t - T)] B (7) X(T) dz 
i 

Having multiplied this equality by H, we obtain 

(2.2) f 
Hx(t)=H exp (At)x, + IZ? expIA(t - r)lB(r)X(X)dX 

0 

Since motion x = 0 of system (1.1) is y-stable, the function H exp (At) is bounded, i.e. 
11 H exp (At)I( <fir for 0 <t< 00. Therefore, the inequality 

II Hx (t) II < M II xo II + j M II B (7) II II ax (4 II dr 
0 

is valid, whence 

Thisestimationsignifies thatthecomponenty(t)ofeach solution x(t) of system (2.1) is bounded. 
Consequently, by the lemma the motion x = O'is y-stable. 

If we consider the system 
y’ = (1 + t’)-‘2, 2’ = z 

we can discover #at, in general, we cannot waive the requirement that the last n-m columns 
of matrix B (t) be zero. Indeed, if we set 
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the hypotheses of Theorem 3 are fulfilled except for the requirement that the last n--m=* 
column of matrix B be zero. Each solution of the system has the form 

y(t)=y, tzo \(~++)-‘expWr z (1) = zo exp (t) 

i 

Whence if follows that if z,#O the quantity lly(t)II is not bounded as 

Theorem 4 If motion x= 0. of system (1.1) is asymptotically 
the motion x= 0 of system (2.1) under the condition that the last n-m columns of matrix 
S(t) consist of zeros and II B 0) II < s I where e is sufficiently small. 

t-boo. 

y-stable, then so is 

Proof. Me set 2a = maxi,Q,Re&. Then 

I( H e=p W II= Iii& exp W Qt 0) 11 <&II Qi PI II w Pat) (2.3) 

Here Qi(t) are polynomials of degree no higher than n; therefore, theestimationof (2.3) can 

bereplacedby 
II H exp (At) II Q c exp (at) 

In such case, from (2.2) we obtain 

II Rx 0) II 6 c II ~0 II exp (at) + ce f exp [a (t - ~)1 II Hx (r) II dz 
0 

After multiplying both sides of this inequality by exp(-at) and applying the Gronwall-Bellman 
inequality, we obtain the estimation 

II Hx (4 II e=p (-- at) d c II x0 II exp (4 
If ce+a<O, the relation 

lim 11 Hx (t)II = 0 as t+ m 

is fulfilled, which, by the lemma, is equivalent to the asymptotic y-stability of motion 
x=0 of system (2.1). 

The example 
y' = - y + e (1 + It l-l):, 2' = z 

shows that here too we cannot waive the requirement that the last n-m columns of matrix B(t) 
be zero. Indeed, if we set 

then the conditions of Theorem 4 are fulfilled except for that requirement. For any E#O the 
component t 

is 

1. 

2. 

3. 

4. 

5. 

6. 

y(t)= exp(--) (~0% j- (1 + IWexp(Wd~) 
0 

not bounded as t-ica. 
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